
STIF: Learning Continuous Video Representation for
Space-Time Super-Resolution

Abstract

Videos typically record the streaming and continuous vi-
sual data as discrete consecutive frames. Since the storage
cost is expensive for videos of high fidelity, most of them are
stored in a relatively low resolution and frame rate. Recent
works of Space-Time Video Super-Resolution (STVSR) are
developed to incorporate temporal interpolation and spa-
tial super-resolution in a unified framework. However, most
of them only support a fixed up-sampling scale, which lim-
its their flexibility and applications. In this work, instead of
following the discrete representations, we propose a Space-
Time Implicit Function (STIF) as a continuous representa-
tion for videos, and we show its applications for STVSR.
The learned implicit neural representation can be decoded
to videos of arbitrary spatial resolution and frame rate.
We show that STIF achieves competitive performances with
state-of-the-art STVSR methods on common up-sampling
scales and significantly outperforms prior works on contin-
uous and out-of-training-distribution scales.

1. Introduction
We observe the visual world in the form of streaming and

continuous data. However, when we record such data with
a video camera in a computer, it is often stored with limited
spatial resolutions and temporal frame rates. Because of
the high cost on recording and storing large time-scales of
video data, oftentimes our computer vision system will need
to process low-resolution and low frame rate videos. This
introduces challenges in recognition systems such as video
object detection [52], and we are still struggling at learning
to recognize motion and actions from discrete frames [4,
12]. When presenting the video back to humans (e.g., on
a TV), it is essential to visualize it in high resolution and
high frame rate for user experience. How to recover the low
resolution video back to high resolution in space and time
becomes an important problem and the first step for many
downstream applications.

Space-time video super-resolution (STVSR) ap-
proaches [15,21,28,37,38,47,48] are developed to increase
the spatial resolution and frame rate at the same time
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Figure 1. Our Space-Time Implicit Function (STIF) learns a con-
tinuous video representation, which maps any 3D space-time co-
ordinate to an RGB value. This nature enables STIF to extend
the latent interpolation space of STVSR from fixed space and time
scales to arbitrary frame rate and spatial resolution.

given a low-resolution and low frame rate video as the
input. Instead of performing super-resolution in space
and time separately in two stages, researchers recently
propose to simultaneously perform super-resolution in one
stage [15,21,47,48]. Intuitively, the aggregated information
in time from multiple frames can reveal missing details for
each frame when spatial scaling is applied, and the temporal
interpolation can be more smooth and accurate given higher
and richer spatial representation. The one-stage end-to-end
training has shown to unify the benefits from both sides.
While these results are encouraging, most approaches can
only perform super-resolution to a fixed space and time
scale ratio.

In this paper, instead of super resolution in a fixed scale,
we propose to learn a continuous video representation,
which allows to sample and interpolate the video frames
in arbitrary frame rate and spatial resolution at the same
time. Our key idea is to learn a neural implicit function,
which takes a space-time coordinate as input, and outputs



the corresponding RGB value. Since we can sample the
coordinate continuously, the video can be decoded in any
spatial resolution and frame rate. Our work is inspired by
recent progress on implicit functions for 3D shape represen-
tations [10,13,14,26] and image representations with Local
Implicit Image Functions (LIIF) using a ConvNet [7]. Dif-
ferent from images, where interpolation in space is based on
the gradients between pixels, pixel gradients across frames
with low frame rates are hard to compute. The network will
need to understand the motion of the pixels and objects to
perform interpolation, which is hard to model by 2D or 3D
convolutions alone.

We propose a novel Space-Time Implicit Function
(STIF) for continuous video representation. In the STVSR
task, two low-resolution image frames are concatenated and
forwarded to an encoder which generates a feature map with
spatial dimensions. STIF then defines a continuous video
representation over the generated feature map. It first uses a
spatial implicit function module to learn a continuous spa-
tial feature domain, from which a high-resolution image
feature is sampled according to all query coordinates. In-
stead of using convolutional operations to perform tempo-
ral interpolation, we design the temporal implicit function
module to first output a motion flow field given the high-
resolution feature and the sampling time as inputs. This
flow field will be applied back to warp the high-resolution
feature which will be decoded to the target video frame.
Since all the operations are differentiable, we can learn the
motion in feature level end-to-end without any extra su-
pervision besides the reconstruction error. To summarize,
given the input frames, an encoder generates a feature map,
which can be then decoded by STIF to arbitrary spatial res-
olution and frame rate.

In our experiments, we demonstrate that STIF can not
only represent video in arbitrary space and time resolu-
tions on the scales within the training distributions, but
also extrapolate to out-of-distribution frame rates and spa-
tial resolutions. Given the learned continuous function, in-
stead of decoding the whole video each time, it allows the
flexibility to decode only a certain region and time scale
when needed. We conduct experiments with Vid4 [23], Go-
Pro [29] and Adobe240 [41] datasets. We demonstrate that
STIF achieves competitive performances with state-of-the-
art STVSR methods on in-distribution spatial and temporal
scales and significantly outperforms other methods on out-
of-distribution scales.

We highlight our main contributions as follows:

• We propose a novel Space-Time Implicit Function as a
continuous video representation.

• The proposed approach allows for representing videos
in arbitrary space and time resolution efficiently with
one single network.

• STIF achieves out-of-distribution generalization and
outperforms baselines by a large margin.

2. Related Work
Implicit neural representation. Implicit neural represen-
tations have been demonstrated as compact yet powerful
continuous representations for various tasks, including 3D
reconstruction [10, 13, 14, 26] and generation [5, 11, 36].
These representations typically represent signals as a neu-
ral function that maps coordinates to signed distance [34],
occupancy [8, 24], or density and RGB values in a neu-
ral radiance field (NeRF [27]). Recent works also show
promising results of applying this idea for modeling 2D im-
ages [1, 7, 20, 40]. Our continuous video representation is
inspired by this rapidly growing field and has specific de-
signs for videos, where a learnable flow can exploit the cor-
respondences in video frames with inductive bias.
Video frame interpolation. Video frame interpolation
(VFI) aims to synthesize unseen frames between the in-
put video frames. Meyer et al. [25] proposed a phase-
based method where information across levels of a multi-
scale pyramid is combined for the synthesis of interpolated
frames. Niklaus et al. [32,33] introduced a series of kernel-
based VFI algorithms in which they took pixel synthesis
for the target frame as local convolution over input frames.
Optical flow based VFI methods [2, 18, 30, 31, 49, 50] uti-
lized optical flow prediction networks (e.g. PWC-Net [42])
to compute bidirectional flows between input frames, which
served as the guidance for new frame synthesis. Addi-
tional information including occlusion masks [18,50], depth
maps [2], and cycle consistency [35] were also incorporated
in the models for better performances.
Video super-resolution. Video super-resolution (VSR)
aims at increasing the spatial resolutions of low-resolution
videos. Earlier approaches [3, 43, 50] were typically built
on the sliding-window framework, where they predicted
optical flows between input frames and performed spatial
warping for explicit feature alignment. Later on, implicit
alignment started a new trend in this task [6, 17, 19, 44, 45].
For instance, TDAN [44] adopts deformable convolutions
(DCNs) [9,51] to align different input frames at feature lev-
els. EDVR [45] further extends DCNs to a multi-scale fash-
ion for more accurate alignment. Kelvin et al. introduced
BasicVSR [6], in which they analyzed basic components
for VSR models and suggested a bidirectional propagation
scheme to maximize the gathered information from input
frames.
Space-time video super-resolution The target of Space-
time video super-resolution (STVSR) is to simultaneously
increase the spatial and temporal resolutions of the given
low-resolution low frame rate videos. Shechtman et al. [38]
tackled this problem by combining information from multi-
ple input video sequences and applying a directional space-
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Figure 2. A continuous video representation defined by Space-Time Implicit Function (STIF). Two input frames are concatenated and
encoded as a discrete feature map. Based on the feature, a 3D space-time coordinate is first decoded to a motion flow vector by a Spatial
Implicit Function (SIF) and a Temporal Implicit Function (TIF). We then sample a new feature vector by warping according to the motion
flow, and decode it as the RGB prediction of the query coordinate using a neural network. We omit the multi-scale feature aggregation part
in this figure.

time regularization. Mudenagudi et al. [28] proposed a uni-
fied framework for STVSR in which videos are modeled
as Markov random fields, and the maximum a posteriori
estimates are taken as final solutions. Shahar et al. [37]
introduced an effective space-time patch recurrence prior
for STVSR. Recently, with the advances in deep learn-
ing, researchers started to employ powerful convolutional
neural networks to address the task [15, 21, 47, 48]. Xi-
ang et al. [47] proposed a unified neural network for syn-
thesizing the feature of the missing frame and used a de-
formable ConvLSTM to align and aggregate extracted tem-
poral information for reconstruction. STARNet [15] lever-
aged mutually informative relationships between time and
space with the assistance of additional optical flow inputs.
TMNet [48] proposed a temporal modulation block to mod-
ulate deformable convolution kernels for supporting frame
interpolation at arbitrary time instances. All these STVSR
methods are designed to perform super-resolution on a spe-
cific up-sampling space scale defined before training, and
some of them [15, 47] can only infer intermediate frames
at pre-defined times. Therefore, the application scopes of

these methods are limited. Our STIF is proposed to learn
a continuous video representation that supports frame inter-
polation at arbitrary spatial resolution and frame rate. STIF
is more flexible during the application and can be employed
in more circumstances, such as non-uniform interpolation
and video zoom-in in local regions.

3. Space-Time Implicit Function
Given a video with limited spatial resolution and frame

rate, our goal is to find a continuous representation for the
video. The representation interprets arbitrary space-time
coordinate (xs, xt) into RGB values. To this end, we intro-
duce the Space-Time Implicit Function (STIF), which pro-
duces continuous video representations of all videos. It is
parameterized by multi-layer perceptrons (MLPs) and takes
the form

s = fθ(xs, xt,V) (1)

where fθ is the proposed space-time implicit function, V is
the given video, xs is the 2D spatial coordinate, xt is the
temporal coordinate, and s is the predicted RGB value. In
order to learn such neural implicit representation, we pro-



pose to decouple space and time and adopt two implicit
functions to represent them separately.

Figure 2 illustrates an overview of our model. Given
a space-time coordinate (xs, xt) and the feature extracted
from input frames by an encoder, a spatial implicit func-
tion (SIF) is first utilized to decode the spatial coordinate
xs and output a corresponding feature vector (Sec. 3.1). The
feature is then forwarded to the temporal implicit function
(TIF) for the motion flow at the query coordinate (Sec. 3.2).
The flow is applied back to warp the continuous feature de-
fined by SIF for a new feature vector (Sec. 3.3) which is
finally decoded to the target RGB value (Sec. 3.4).

3.1. Continuous Spatial Representation

Inspired by LIIF [7], we use a neural implicit function for
learning a continuous spatial representation. The implicit
function converts the discrete encoded feature map to a con-
tinuous feature domain that decodes arbitrary 2D spatial co-
ordinate into a corresponding feature vector. Specifically,
the feature vectors generated by the encoder are evenly dis-
tributed in the 2D space. We sample the feature vector (the
dark blue cuboid in Fig 2) nearest to the queried spatial
coordinate xs, concatenate it with the relative position in-
formation between query coordinate and feature vector, and
input them into the Spatial Implicit Function (SIF) fs to out-
put the continuous feature at xs (the green cuboid in Fig 2).
This process could be expressed as

Fs(xs) = fs(z
∗, xs − v∗) (2)

where Fs is the continuous feature domain defined by SIF,
z∗ is the feature vector nearest to the query coordinate xs
and v∗ is the spatial coordinate of the feature vector z∗.

The main difference between LIIF and SIF is that LIIF
is proposed for continuous image representation, while SIF
defines a continuous feature domain, which is supposed to
be further utilized for modeling temporal information in
videos.

3.2. Continuous Temporal Representation

The proposed SIF defines a new continuous feature do-
main in 2D space. Our next step is to learn the continuous
temporal representation and extend the feature domain from
2D space to 3D space and time, which can be achieved by
decoding the temporal coordinate xt. Directly generating
the target decoded feature by a network can be fairly diffi-
cult, as the network has to learn not only the motion patterns
between input frames but also the context information. In-
stead, we propose to learn a continuous motion flow field
for temporal representation. We introduce a temporal im-
plicit function (TIF) to produce the motion flow.

Given a 3D space-time coordinate (xs, xt) and input
frames I0 and I1, the goal of TIF is to learn a mapping from

the coordinate to a motion flow

M(xs, xt) = ft(xs, xt, I0, I1) (3)

whereM is the continuous motion flow field and ft is the
temporal implicit function. Benefiting from the 2D contin-
uous feature domain provided by SIF, we could replace the
two input frames and the spatial coordinate xs in input pa-
rameters of TIF with the continuous feature at xs. Thus the
equation could be written as

M(xs, xt) = ft(xt,Fs(xs)) (4)

where Fs(xs) is the feature domain defined in Eq 2.
In practice, we set the output of TIF as the combina-

tion of two motion flows. Based on our observation, TIF
would implicitly learn bi-directional flows under such set-
ting, which could be interpreted as correspondences be-
tween the target frame and two input frames.

3.3. Space-Time Continuous Representation

With two continuous representations for space and time,
we aim at combining them into a unified space-time contin-
uous representation. Starting from a space-time coordinate
(xs, xt), we first use SIF to predict the continuous feature
at xs. TIF is then utilized for calculating the motion flow
of the query coordinate. Based on these outputs, we ob-
tain the space-time feature by warping the continuous fea-
ture domain. The wrapped feature at xs corresponds to the
continuous feature at x′s. The relationship between two co-
ordinates can be written as

x′s = xs +M(xs, xt) (5)

whereM(xs, xt) is the motion flow vector at (xs, xt).
We query this new spatial coordinate in the continuous

2D feature domain and obtain a new feature vector (the light
green cuboid in Fig 2), which is treated as the feature of our
continuous space-time representation at coordinate (xs, xt).
Accordingly, the continuous space-time feature Fst can be
formulated as

Fst(xs, xt) = Fs(x′s) = Fs(xs +M(xs, xt)) (6)

3.4. Feature Decoding

Based on the continuous space-time representation, we
can get the feature corresponding to any space-time coor-
dinate. The final step is to decode the feature as an RGB
value. A straightforward design is to take the obtained
space-time feature for decoding directly. However, due to
the MLP-based network architecture, the RGB value of ev-
ery predicted pixel depends on a single feature vector, lead-
ing to a limited size of the network receptive field. To al-
leviate the negative impact of this disadvantage, we enrich



the input information of the decoding network by aggregat-
ing features of different scales. In detail, we incorporate
the encoded feature as well as two input frames for decod-
ing. Since these additional features are typically of low-
resolution compared with the target resolution, we sample
feature vectors corresponding to the query coordinate by bi-
linear interpolation. All features are then combined together
for predicting the RGB output.

3.5. Frame synthesis

From Section 3.1 to 3.4, we focus on predicting the RGB
value at a specific coordinate. To synthesize an entire frame,
we need to query coordinates of all pixels in it. Given these
coordinates, we can convert the continuous feature from SIF
into a high-resolution feature map. We can also generate a
complete motion flow field for the latent high-resolution in-
terpolated frame. Therefore, we do not have to forward SIF
twice before and after warping as in the situation of one in-
put coordinate. Instead, we warp the whole high-resolution
feature map based on the motion flow and input the warped
feature into the decoding network to synthesize the target
frame at one time.

4. Experiments
4.1. Experimental Setup

Dataset. We use Adobe240 dataset [41] as the training set,
which includes 133 videos in 720P taken by hand-held cam-
eras. We follow [48] to split these videos into the train, val-
idation, and test subsets with 100, 16, and 17 videos. All
videos are converted into image sequences for training and
testing. Each sequence contains approximately 3000 frames
which are treated as high-resolution frames in training. The
low-resolution counterparts are then generated by imresize
function in Matlab with the default setting of bicubic inter-
polation. We use a sliding window to select frames from the
image sequences for training. The length of the sliding win-
dow is set to 9. We take the 1st and 9th frames as network
inputs. The 2nd to 7th frames serve as ground-truth frames,
and we randomly select three of them as the supervision
of our network in every iteration. STIF is trained by two
stages. In the first stage, we fixed the down-sampling space
scale to×4. In the second stage, we randomly sample scales
in a uniform distribution U(1, 4). We provide more discus-
sion about this two-stage training strategy in Section 4.3.

Datasets including Vid4 [23], Adobe240 [41], and Go-
Pro [29] are used for evaluation. On Vid4, we only conduct
experiments on single frame interpolation of STVSR. For
Adobe240 and GoPro, we evaluate on their test set. The im-
age sequences extracted from videos in the datasets are split
into groups of 9-frame video clips. We feed the 1st and 9th

frames down-sampled by scale ×4 in each clip into models
to generate 9 high-resolution frames from 1st to 9th. We

separately evaluate the average metrics of the center frames
(i.e. the 1st, 4th, 9th frames) and all 9 output frames. They
are denoted as -Center and -Average in Table 1.
Implementation details. We use Adam optimizer [22] with
β1 = 0.9 and β2=0.999. The learning rate is initialized as
1×10−4 and is decayed to 1×10−7 with a cosine annealing
for every 150,000 iterations. The model is trained in a total
of 600,000 iterations with batch size 24. The first training
stage includes 450,000 iterations while the second stage in-
cludes 150,000 iterations. The input frames in one batch
are down-sampled by the same space scale and randomly
cropped into patches with size 32×32. We perform data
augmentation by randomly rotating 90◦, 180◦ and 270◦,
and horizontal-flipping. We use Zooming SlowMo [47] as
the encoder. For the spatial implicit function and temporal
implicit function, we utilize two 3-layer SIRENs [39] with
hidden dimensions of [64, 64, 256]. For the decoding net-
work, we employ a 4-layer SIREN with hidden dimensions
of [64, 64, 256, 256]. As suggested in [47,48], we select the
Charbonnier loss function for optimization.
Evaluation. Peak-Signal-to-Noise Ratio (PSNR) and
Structual Similarity Index (SSIM) [46] are employed to
evaluate model performances. We also compare the model
size and inference time to measure the efficiency of models.

4.2. Comparison to State-of-the-arts

We compare the proposed STIF with state-of-the-art
two-stage and one-stage STVSR methods. For two-stage
methods, we employ SuperSloMo [18], QVI [49], and
DAIN [2] for video frame interpolation (VFI); Bicubic
Interpolation, EDVR [45], and BasicVSR [6] for video
super-resolution (VSR). For one-stage methods, we com-
pare STIF with recently developed Zooming SlowMo [47]
and TMNet [48]. To perform fair comparisons, we train the
three VFI methods and Zooming SlowMo from scratch on
Adobe240 dataset. For TMNet, as mentioned in the original
paper that a two-stage training scheme is needed for conver-
gence, we pre-train the model on Vimeo90K [50] dataset
and fine-tune it on Adobe240 dataset [41]. Therefore, TM-
Net is trained on more data compared with other methods,
which may lead to some advantages in the comparison. To
compare with Zooming SlowMo that only supports fixed
frame interpolation, we train a new version of STIF named
STIF-fixed of which the interpolation time is fixed to 0.5.
Quantitative results. We present in-distribution quantita-
tive comparisons between STIF and other STVSR meth-
ods in Table 1. On single frame interpolation of STVSR
including Vid4, GoPro-Center, and Adobe-Center, STIF-
Fixed achieves competitive performance compared with
other state-of-the-art models, while the performance of
STIF slightly suffers. We attribute this observation to the
difference of training targets between STIF and STIF-Fixed.
The training settings of STIF-Fixed aim for synthesizing



Table 1. Quantitative comparison on benchmark datasets including Vid4 [23], GoPro [29] and Adobe240 [41]. The best three results
are highlighted in red, blue, and bold. We omit the results of Zooming SlowMo and STIF-Fixed on GoPro-Average and Adobe240-Average
as the two models are trained for synthesizing frames only at fixed times.

VFI
Method

SR
Method

Vid4 GoPro-Center GoPro-Average Adobe-Center Adobe-Average Parameters
(Million)PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SuperSloMo [18] Bicubic 22.42 0.5645 27.04 0.7937 26.06 0.7720 26.09 0.7435 25.29 0.7279 19.8
SuperSloMo [18] EDVR [45] 23.01 0.6136 28.24 0.8322 26.30 0.7960 27.25 0.7972 25.95 0.7682 19.8+20.7
SuperSloMo [18] BasicVSR [6] 23.17 0.6159 28.23 0.8308 26.36 0.7977 27.28 0.7961 25.94 0.7679 19.8+6.3

QVI [18] Bicubic 22.11 0.5498 26.50 0.7791 25.41 0.7554 25.57 0.7324 24.72 0.7114 29.2
QVI [18] EDVR [45] 23.60 0.6471 27.43 0.8081 25.55 0.7739 26.40 0.7692 25.09 0.7406 29.2+20.7
QVI [18] BasicVSR [6] 23.15 0.6428 27.44 0.8070 26.27 0.7955 26.43 0.7682 25.20 0.7421 29.2+6.3
DAIN [2] Bicubic 22.57 0.5732 26.92 0.7911 26.11 0.7740 26.01 0.7461 25.40 0.7321 24.0
DAIN [2] EDVR [45] 23.48 0.6547 28.01 0.8239 26.37 0.7964 27.06 0.7895 26.01 0.7703 24.0+20.7
DAIN [2] BasicVSR [6] 23.43 0.6514 28.00 0.8227 26.46 0.7966 27.07 0.7890 26.23 0.7725 24.0+6.3

Zooming SlowMo [47] 25.72 0.7717 30.69 0.8847 - - 30.26 0.8821 - - 11.10
TMNet [48] 25.96 0.7803 30.14 0.8692 28.83 0.8514 29.41 0.8524 28.30 0.8354 12.26
STIF-fixed 25.78 0.7730 30.73 0.8850 - - 30.21 0.8805 - - 11.31

STIF 25.61 0.7709 30.26 0.8792 29.41 0.8669 29.92 0.8746 29.27 0.8651 11.31

Table 2. Quantitative comparison for out-of-distribution scales on GoPro dataset. Model performances are evaluated by PSNR and
SSIM. Some results of TMNet are bolded as it does not support generalizing to out-of-training-distribution space scales.

Time Scale Space Scale SuperSloMo [18] + LIIF [7] DAIN [2] + LIIF [7] TMNet [48] STIF
×6 ×4 26.70 / 0.7988 26.71 / 0.7998 30.49 / 0.8861 30.78 / 0.8954
×6 ×6 23.47 / 0.6931 23.36 / 0.6902 - 25.56 / 0.7671
×6 ×12 21.92 / 0.6495 22.01 / 0.6499 - 24.02 / 0.6900
×12 ×4 25.07 / 0.7491 25.14 / 0.7497 26.38 / 0.7931 27.32 / 0.8141
×12 ×6 22.91 / 0.6783 22.92 / 0.6785 - 24.68 / 0.7358
×12 ×12 21.61 / 0.6457 21.78 / 0.6473 - 23.70 / 0.6830
×16 ×4 24.42 / 0.7296 24.20 / 0.7244 24.72 / 0.7526 25.81 / 0.7739
×16 ×6 23.28 / 0.6883 22.80 / 0.6722 - 23.86 / 0.7123
×16 ×12 21.80 / 0.6481 22.22 / 0.6420 - 22.88 / 0.6659

Table 3. Quantitative comparison of out-of-distribution per-
formance between STIF and the baseline Zooming Slomo
model [47]. Evaluated on GOPRO dataset. -×A×B refers to A
up-sampling space scale and B up-sampling time scale.

Method GoPro - ×4×2 GoPro - ×16×4
PSNR SSIM PSNR SSIM

Zooming Slomo 30.69 0.8847 23.38 0.6708
STIF 30.26 0.8792 23.45 0.6710

frames at pre-defined times. Therefore, it only learns fixed
patterns between input frames instead of learning a contin-
uous representation as STIF does, leading to advantages in
performances. On Vid4, TMNet performs the best, and we
assume this is because TMNet is trained with more data as
we noted in Section 4.2. For multiple frame interpolation
of STVSR including GoPro-Average and Adobe-Average,
STIF achieves the best performance, which indicates that
the proposed implicit neural representation provides ad-
vances on modeling the temporal information in videos.

In Table 2, we present comparisons of STVSR meth-
ods on out-of-distribution space and time scales. For two-
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Figure 3. Inference time of STVSR methods on different up-
sampling time scales. Note that We only select the most efficient
two-stage method (SuperSlomo + EDVR) for comparison.

stage STVSR methods, we select SuperSloMo and DAIN as
VFI methods, and LIIF as the SR method since it can per-
form super-resolution on arbitrary up-sampling scales. We
also take TMNet into the comparison as it could general-
ize on time scales. We produce experiments on GoPro [29]
dataset. We observe that STIF outperforms other methods
by a large margin, demonstrating the advantage of our con-
tinuous video representation in out-of-distribution general-
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Figure 4. Qualitative comparisons of different STVSR methods on arbitrary frame interpolation. The interpolation times of the first
example are in the training distribution and the times of the second example are out-of-distribution. Best zoom in for better visualization.

ization. In addition, we further compare STIF with Zoom-
ing SlowMo (the encoder for STIF) in out-of-distribution
scales. As Zooming SlowMo only supports interpolating
fixed frames, we apply the model twice to achieve out-of-
distribution inferences. In Table 3, we observe that while
Zooming SlowMo performs slightly better on single frame
interpolation (×4×2), STIF achieves better performance in
out-of-distribution testing (×16× 4).

We compare the inference time of STVSR methods in
Figure 3. We observe that the efficiency of STIF is close
to Zooming-SlowMo and TMNet at up-sampling time scale
×2, and STIF inferences faster than other models on multi-
frame interpolation. We attribute this feature to the de-
sign of STIF, where all the latent frames between two input
frames can be synthesized by MLPs after encoding.

Qualitative Results We demonstrate a qualitative compari-
son in Figure 4. We compare STIF with two STVSR meth-
ods, DAIN + BasicVSR and TMNet. The selected temporal
coordinates of the first sample are in the training distribu-
tion, while the coordinates of the second sample are out-of-
distribution. We find that the performance of DAIN + Ba-
sicVSR degrades in out-of-distribution circumstances (see
the rider’s head in the second sample). TMNet fails to re-
cover objects with large motion between two input frames
(see the flowers in the first sample). The performance
of STIF is steady across both in-distribution and out-of-
distribution temporal coordinates, indicating that learning
continuous video representations helps to improve model
generalization in STVSR task.



Table 4. Ablation study on architecture designs of STIF. Evaluated on GOPRO and Adobe240 dataset. -f/m refers to removing flow
correspondence and multi-scale feature aggregation. -s refers to decoding both time and space by a single implicit function.

Architecture
Design

GoPro-Center GoPro-Average Adobe-Center Adobe-Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STIF 30.26 0.8792 29.41 0.8669 29.92 0.8746 29.27 0.8651
STIF (-f) 29.63 0.8719 28.76 0.8614 29.19 0.8641 28.50 0.8569
STIF (-m) 29.99 0.8751 29.28 0.8655 29.68 0.8690 29.04 0.8606
STIF (-s) 29.86 0.8741 29.20 0.8654 29.42 0.8678 28.95 0.8613

Table 5. Ablation study on STIF trained with different data settings. Evaluated on GOPRO-Average. -×4 refers to fixing the down-
sampling space scale to ×4 throughout the training. -continuous refers to training STIF by continuous space scales from scratch.

Training
Settings

Space ×2 Space ×3 Space ×4 Space ×6 Space ×12
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STIF 29.61 0.8734 29.14 0.8685 29.41 0.8669 25.40 0.7590 24.11 0.6913
STIF (-×4) 28.25 0.8490 28.62 0.8626 29.50 0.8696 25.24 0.7567 23.82 0.6857

STIF (-continuous) 27.46 0.8268 28.35 0.8507 28.82 0.8541 25.10 0.7533 23.62 0.6801

4.3. Ablation Study

Motion Flow Field. Motion flow is one critical component
of STIF. Previous video interpolation methods [16,18] have
already demonstrated that such a learnable flow helps to in-
terpolate frames with sharp edges and clear details. We pro-
pose that the motion flow field brings two main advantages.
First, the flow field could capture non-local information and
temporal contexts of large motions. Second, we explicitly
apply spatial warping on features, which works as an in-
ductive bias for the training. In Table 4 between STIF and
STIF (-f), we show that the performance degrades when the
motion flow is not incorporated in STIF.
STIF trained with different data settings. In Table 5, we
compare the performances of STIF trained on different data
settings. As noted before, STIF follows a two-stage training
strategy: fixed down-sampling space scale for the first stage
and continuous space scales sampled from a uniform dis-
tribution for the second stage. STIF-×4 indicates that the
space scale is fixed to ×4 throughout the training of STIF.
STIF-continuous represents STIF trained with continuous
down-sampling space scales from scratch. We find that the
performance suffers a significant drop when we train STIF
only on continuous scales. We hypothesize this is because
the network needs to learn spatial and temporal representa-
tions at the same time, and it becomes extremely difficult to
learn such temporal representation when the scale of spa-
tial features keeps varying. Besides, we observe that train-
ing STIF with a fixed space scale achieves slightly better
performance for that specific scale. However, its general-
ization performance is competed by STIF trained by two
stages, which is demonstrated by the comparisons between
STIF and STIF (-×4) on space scales other than ×4.
Other design choices. We provide more ablation studies in
Table 4. By comparing STIF with STIF (-m), we find that

the proposed multi-scale feature aggregation contributes to
performance improvement. We also try to combine SIF and
TIF into a single implicit function, that is, we use one im-
plicit function to generate the continuous motion flow and
apply spatial warping only on the encoded feature and input
frames. The results between STIF and STIF (-s) indicate
that using two implicit functions for representing space and
time outperforms only one implicit function for them all.

5. Discussion
Conclusion. In this paper, we present a Space-Time Im-
plicit Function (STIF) for continuous video representa-
tion. STIF can represent videos in arbitrary spatial and
temporal resolution, which brings natural advantages for
solving space-time video super-resolution (STVSR) tasks.
Extensive experiments show that STIF performs compet-
itively with state-of-the-art STVSR methods on common
up-sampling scales and outperforms prior works by a large
margin on out-of-distribution scales.
Limitations and Future Work. We observe that there exist
few cases for which STIF does not perform very well. These
cases typically need to handle very large motions, which is
still an open challenge for video interpolation.
Ethical Concerns. STIF interpolates frames based on
learned statistics of the training dataset. Thus, it would re-
flect biases in those data, including ones with negative soci-
etal impacts. STIF may generate inexistent or fake contents.
These issues warrant further consideration before process-
ing videos by STIF. As researchers, we are committed to
against misconduct behaviors and pursue research that is to
the benefit of society.
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